The NMR structure of Escherichia coli ribosomal protein L25 shows homology to general stress proteins and glutaminyl-tRNA synthetases.
نویسندگان
چکیده
The structure of the Escherichia coli ribosomal protein L25 has been determined to an r.m.s. displacement of backbone heavy atoms of 0.62 +/- 0.14 A by multi-dimensional heteronuclear NMR spectroscopy on protein samples uniformly labeled with 15N or 15N/13C. L25 shows a new topology for RNA-binding proteins consisting of a six-stranded beta-barrel and two alpha-helices. A putative RNA-binding surface for L25 has been obtained by comparison of backbone 15N chemical shifts for L25 with and without a bound cognate RNA containing the eubacterial E-loop that is the site for binding of L25 to 5S ribosomal RNA. Sequence comparisons with related proteins, including the general stress protein, CTC, show that the residues involved in RNA binding are highly conserved, thereby providing further confirmation of the binding surface. Tertiary structure comparisons indicate that the six-stranded beta-barrels of L25 and of the tRNA anticodon-binding domain of glutaminyl-tRNA synthetase are similar.
منابع مشابه
Participation of the dnaK and dnaJ gene products in phosphorylation of glutaminyl-tRNA synthetase and threonyl-tRNA synthetase of Escherichia coli K-12.
The heat shock proteins DnaK and DnaJ of Escherichia coli participate in phosphorylation of both glutaminyl-tRNA synthetase and threonyl-tRNA synthetase. When cellular proteins extracted from the dnaK7(Ts) and dnaJ259(Ts) mutant cells labeled with 32Pi at 42 degrees C were analyzed by two-dimensional gel electrophoresis, no phosphorylation of these proteins was observed when they were compared ...
متن کاملThe general stress protein Ctc of Bacillus subtilis is a ribosomal protein.
Cells respond to stress conditions by synthesizing general or specific stress proteins. The Ctc protein of Bacillus subtilis belongs to the general stress proteins. The synthesis of Ctc is controlled by an alternative sigma factor of RNA polymerase, sigmaB. Sequence analyses revealed that Ctc is composed of two domains, an N-terminal domain similar to the ribosomal protein L25 of Escherichia co...
متن کاملA base pair at the bottom of the anticodon stem is reciprocally preferred for discrimination of cognate tRNAs by Escherichia coli lysyl- and glutaminyl-tRNA synthetases
Although the yeast amber suppressor tRNA(Tyr) is a good candidate for a carrier of unnatural amino acids into proteins, slight misacylation with lysine was found to occur in an Escherichia coli protein synthesis system. Although it was possible to restrain the mislysylation by genetically engineering the anticodon stem region of the amber suppressor tRNA(Tyr), the mutant tRNA showing the lowest...
متن کاملRescuing an essential enzyme-RNA complex with a non-essential appended domain.
Certain protein-RNA complexes, such as synthetase-tRNA complexes, are essential for cell survival. These complexes are formed with a precise molecular fit along the interface of the reacting partners, and mutational analyses have shown that amino acid or nucleotide substitutions at the interface can be used to disrupt functional or repair non-functional complexes. In contrast, we demonstrate he...
متن کاملDeinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation
Glutaminyl-tRNA synthetase from Deinococcus radiodurans possesses a C-terminal extension of 215 residues appending the anticodon-binding domain. This domain constitutes a paralog of the Yqey protein present in various organisms and part of it is present in the C-terminal end of the GatB subunit of GatCAB, a partner of the indirect pathway of Gln-tRNA(Gln) formation. To analyze the peculiarities...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 17 21 شماره
صفحات -
تاریخ انتشار 1998